Above depicts (10) pallet lots.
4’0" dimension left-to-right.
(some packages cool better in this orientation.)
If 1,200 pound pallets/bins, then
3,499 cfm/pallet; 2.91 cfm/pound.
If 2,000 pound pallet/bins, then still
3,499 cfm/pallet, but 1.75 cfm/pound.
The heavier pallets will take longer to cool,
because of less cfm/airflow per pound/kilo.

Above depicts (10) pallet lots.
3’4" dimension left-to-right.
(most packages cool better in this orientation.)
If 1,200 pound pallets/bins, then
3,499 cfm/pallet; 2.91 cfm/pound.
If 2,000 pound pallet/bins, then still
3,499 cfm/pallet, but 1.75 cfm/pound.
The heavier pallets will take longer to cool,
because of less cfm/airflow per pound/kilo.

In both orientations/layouts, as simple math can show, that if you try to
precool twice as many pallets (e.g. 20 at a time), then you only have
one-half the airflow per pallet, and cooling will take twice as long.
BTU/hr = cfm * delta-T * 1.08 (constant).