Outline

• The ripening process in blackberry
• Blackberry harvest management
• Postharvest handling
• Blackberry storage conditions
• Blackberry postharvest problems
The Ripening Process

• Blackberries grow in size and weight during ripening
 – 35-45 days from flowering to ripe fruit
 – 85% of fruit size is gained during last days before harvest
 – Color changes from green to red to black
The Ripening Process

• Changes in fruit quality during ripening:
 – Flavors and sugars increase
 – Fruit softens and loosens from recepticle
 – Acids decrease
Maturity Indices

- Fruit color
- Gloss of fruit
- Ease of detachment from pedicel
- Fruit chemistry
Quality Indices

• Appearance
 – Fully black color
 – Proper stage for market (glossy or dull)
Quality Indices

• Size and shape
 – Consistent for cultivar
 – Uniform
• Fully turgid (firm)
Quality Indices

• Flavor
 – Soluble solids (sugars)
 – usually 9-12° Brix
 – Titratable acidity
 – Flavor volatiles
Quality Indices

- Freedom from defects
 - Fruit injury
 - Fruit decay
 - Calyces (caps)
 - Sunscald
The Ripening Process

- Blackberry quality does not improve after harvest
Blackberry Harvest

• Blackberries for fresh market are hand-harvested
• Machine harvest is possible for processing-quality fruit
Blackberry Harvest

• Harvest stages
 – Shiny black
 • Berries are less sweet
 • Berries are firmer; best stage for handling and shipping
 – Dull black
 • Sweeter berries
 • Softer fruit, reduced shelf life
 • Only for local sales
Blackberry Harvest

• Harvest at least twice per week
• Harvest in morning when fruit is cool and full of water (turgid)
• Handle carefully during harvest
• Gently place berries no more than 2 inches deep in harvest or sales containers
• Cool the fruit as soon as possible after harvest
Postharvest Handling

FRESH PRODUCE

IS ALIVE

LOSES MOISTURE

BREATHES

RELEAS ES HEAT

CAN EVEN DIE

CAN GET SICK
Postharvest Handling

• Blackberries may be held in cold storage for 2 to 14 days, depending on:
 – Cultivar (berry firmness)
 – Ripeness stage
 – Careful handling

• Ideal cold storage conditions:
 – Temperature: -0.5 - 0°C (31.1-32°F)
 – Relative humidity: >90%
Postharvest Handling

- Precooling is critical, to remove field heat in advance of longer term storage
 - Cool to 5°C within 4 hours
Postharvest Handling
<table>
<thead>
<tr>
<th>Temperature (°C (°F))</th>
<th>Respiration Rate (ml CO₂/kg*hr)</th>
<th>Heat Production (kcal/metric ton/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °C (32 °F)</td>
<td>11</td>
<td>1342</td>
</tr>
<tr>
<td>10 °C (50 °F)</td>
<td>31</td>
<td>3782</td>
</tr>
<tr>
<td>20 °C (68 °F)</td>
<td>78</td>
<td>9516</td>
</tr>
</tbody>
</table>
Postharvest Sensitivities

• Blackberries are not sensitive to chilling damage

• Ethylene issues
 – Ethylene production: 0.1-1.0 µl/kg*hr at 5°C
 – Blackberries do not respond to ethylene by stimulation of ripening processes
Controlled Atmosphere

• Modified atmosphere conditions
 – Carbon dioxide: 15-20%
 – Oxygen: 5-10%

• Benefits of controlled atmosphere
 – Reduced decay
 – Reduced respiration, reduce softening, longer postharvest life

• Whole pallet covers and consumer packages used for CA
Postharvest Handling

• Berries for processing
 – Process as soon as possible (within 24 hours)
 – Freeze berries for long term storage
 • IQF (individual quick frozen)
 • Bulk pack
Blackberry Postharvest Problems

• Physiological disorders
 – Red drupelet disorder
 – Shriveling/water loss
 – Leakage
 – CA related disorders

• Pathological disorders
Physiological Disorders

- Red drupelet disorder
 - Causes include heat stress, rain on fruit, sunburn
 - Susceptible cultivars: Shawnee, Choctaw, Tupi, Kiowa, Chester, Loch Ness, Kuraka
 - Reduced problems with shift trellis
 - Precool fruit, then sort while cold
Physiological Disorders

• Shrivelings/water loss
 – Loss of water from fruit
 – Store under proper relative humidity – 90-95%
 – Store a proper temperature
 – Package in plastic clamshells
Physiological Disorders

• Leakage
 – Physiological breakdown of fruit
 – Harvest at proper stage
 – Store under proper conditions
 – Use pads in plastic clamshell packaging
Physiological Disorders

• CA related disorders
 – Exposure of fruit to <2% oxygen and/or >25% carbon dioxide
 – Off flavors
 – Brown discoloration in fruit
Pathological Disorders

• Managing postharvest fruit rots in the field
 – Disease resistant cultivars
 – Maintain correct crop nutrition
 – Irrigate only as needed
 – Avoid overhead irrigation
 – Preharvest control of diseases and insects
 – Harvest at the proper stage of maturity
Pathological Disorders

• Managing postharvest fruit rots postharvest
 – Maintain good sanitation in packing areas
 – Prompt cooling of fruit
 – Storage at lowest possible safe temperature
 – Prevent physical injury to fruit
 – Shipment under high carbon dioxide
 – Keep infected fruit out of packages
Pathological Disorders

• Botrytis rot
 – Most common postharvest rot
 – Gray or white rot of fruit
Pathological Disorders

• Botrytis rot
 – Disease management during fruit production is critical
 – Watch for infected fruit during harvest, and remove
Any Questions?